# Learning and Researching with Open Source Software

Minghui Zhou

<u>zhmh@pku.edu.cn</u>

Associate Professor

Peking University



- A snapshot of Open Source Software (OSS)
- Learning with OSS
- Research on OSS

# A SNAPSHOT OF OPEN SOURCE SOFTWARE

Is OPEN (Source Software) FREE? What OSS are out there? Who are working on OSS?

# Is Open Source Software Free?

■ Student A: OSS is free

□ Free: 免费

□ Open: 开放

# Open!= Free

### What OSS are out there?

☐ Microsoft Windows vs. Unix & Linux

GNOME

■ Microsoft Office vs. Open Office

■ Microsoft IE

□ DB2/SQLServer

■ IBM Websphere

vs. Firefox

vs. MySQL

vs. JOnAS (OW2)

**Apache Tomcat** 

OpenOffice.org



# Who are working on OSS?

- Volunteers
- Company backing







### **Few Chinese**

### LEARNING WITH OSS

Help with courses.

Learn through participation.

### Help with Courses

- ☐ There are good code out there,
  - Helping to learn the principles and the implementation of an operating system, a web server, etc.
- ☐ There are free OSS out there,
  - Helping to build all kinds of course infrastructures and applications

# Learning and motivated through participation

- " I learned a lot from this leading open source project (Gnome) while working with other contributes."
- "I volunteered because it was exciting to think--and as time progressed, know--that my involvement would have a direct effect on the quality and feature set of Mozilla"
- "A single ant cannot do much, but many ants can move mountains. That is the strength of Open Source. I want to help move a mountain!"

### Trajectories of two volunteers

### Volunteer A

- > College student report bugs from time to time
- Core member
- Now hired by Mozilla

### Volunteer B

- Director of music at St. Patrick Church, Washington, DC - commit fix from time to time
- > Engineering manager at Mozilla
- Now employed by mozdev group, a consulting company specializing in mozilla-based technologies

### ■ Volunteer C

How to attract Long Term Contributors? How commercial involvement affect OSS? What are best practices in OSS?

RESEARCH ON OSS

## How to attract Long Term Contributors?

# Different types of participators vary in orders of magnitude

Mozilla (Average over 2000-2008)



每年用户:千万级别 每年新的参与人数:万

每年成为长期贡献者的人数: 百

Ratio of Contributors to LTCs in Gnome and Mozilla over years



Gnome和Mozilla中 贡献者与长期贡献者的比率逐年降低

### Data Sources

### Project Repositories



Gnome: 156,332 id,

517,801 bugs,

6,398,475 activities

Mozilla: 187,333id,

620,511bugs,

15,662,706activities

Questionnaires: Sent emails to developers

### What happens during the first month?



### How commercial involvement affect OSS?

- Different types of commercial involvement
  - Hosting,
  - Supporting,
  - Collaborating

Epoch1 Epoch3

Epoch3

Epoch3





Fig. 1. Inflow of External Developers in JBossAS, Geronimo, and JOnAS

- For example, Hosting mechanism
  - Decrease the number of newcomers, but,
  - Increase their retention







Fig. 2. Survival Curves of New Joiners in JBossAS, Geronimo, JOnAS each epoch

## What are the best practices in OSS?

- What is the best practice for triaging?
  - Official website is not reliable
  - Tradeoff between developer convenience (efficiency), user experience, and volunteer efficiency



- Which code are reused most often?
  What attributes do they have?
- Who wrote them? Their characters?



- a. Number of roles of triage actors in Gnome
- b. Number of issues each roles triaged in Gnome



- c. Number of roles of triage actors in Mozilla
- d. Number of issues each roles triaged in Mozilla

# A cloud of software repositories

- We keep tracking various commercial and open source projects.
- ☐ This "universal" repository records data from:
  - Version control
  - > Issue tracking
  - Email archives
  - **>** .....

| <u>•</u>       |      |         |           |                  |           |      |
|----------------|------|---------|-----------|------------------|-----------|------|
| Forge          | Type | Files   | File/Ver. | Unique File/Ver. | Branching | From |
| Large cmpny.   | Var. | 3,272K  | 12,585K   | 4,293K           | 2.9       | 1988 |
| SourceForge    | CVS  | 26,095K | 81,239K   | 39,550K          | 2.1       | 1998 |
| code.google    | SVN  | 5,675K  | 14,368K   | 8,584K           | 1.7       | 1996 |
| repo.or.cz     | Git  | 2,519K  | 11,068K   | 5,115K           | 2.2       | 1986 |
| Savannah       | CVS  | 852K    | 3,623K    | 2,345K           | 1.5       | 1985 |
| git.kernel.org | Git  | 12,974K | 97,585K   | 856K             | 114       | 1988 |
| OpenSolaris    | Hg   | 77K     | 1,108K    | 91K              | 12.2      | 2003 |
| FreeBSD        | CVS  | 196K    | 360K      | 75K              | 4.8       | 1993 |
| Kde            | SVN  | 2,645K  | 10,162K   | 527K             | 19.3      | 1997 |
| gnome.org      | SVN  | 1,284K  | 3,981K    | 1,412K           | 2.8       | 1997 |
| Gee            | SVN  | 3,758K  | 4,803K    | 395K             | 12.2      | 1989 |
| Eclipse        | CVS  | 729K    | 2,127K    | 575K             | 3.7       | 2001 |
| OpenJDK        | Hg   | 32K     | 747K      | 60K              | 12.4      | 2008 |

### Open Data -- Internetware

### Machines

- DELL R910(4U), 64GbRAM, 16-cores X7550
- ➤ DELL MD3200, 12\*2TB SAS
- ➤ DELL R710 \* 4, 64GbRAM

### ■ Data Levels

- ➤ Level0: raw data
- ➤ Level1: filtered data
- Level2-n: standardized data



HTTP://passion-lab.org

### What we could do with this data?

- To enable better user experience, and software engineering practices in a largescale
  - > Understand the past, predict the future

Passion-Lab
Software Enginnering Institute
Peking University

Data Center

HTTP://passion-lab.org

# References

- B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.
- B. Curtis. Fifteen years of psychology in software engineering: Individual differences & cognitive science. In ICSE'84, pp 97–106, 1984.
- A. Mockus, R. T. Fielding, and J. Herbsleb. A Case Study of Open Source Development: The Apache Server, 22nd ICSE, pp. 263-272, Limerick, Ireland, June 4-1, 2000.
- A. Mockus. Software support tools and experimental work. In V. Basili and et al, editors, Empirical Software Engineering Issues: Critical Assessments and Future Directions, volume LNCS 4336, pages 91–99. Springer, 2007.
- A. Mockus. Amassing and indexing a large sample of version control systems: towards the census of public source code history. In 6th IEEE Working Conference on Mining Software Repositories, May 16–17 2009.
- http://blogs.gnome.org/bolsh/2010/07/28/gnome-census/
- M. Zhou and A. Mockus. Growth of Newcomer Competence: Challenges of Globalization. In FoSER(future of software engineering) on ACMSIGSOFT / FSE, Santa Fe, New Mexico, Nov 7-8, 2010, pp443-448.



- M. Zhou and A. Mockus. Does the initial environment impact the future of developers? ICSE 2011, Honolulu, Havaii, May 21-28, 2011, pp71-80.
- M. Zhou and A. Mockus. What Make Long Term Contributors: Willingness and Opportunity in OSS Community. ICSE 2012, Zurich, Switzerland, 2-9 June 2012, pp.518-528.
- Xiujuan Ma, Minghui Zhou, Hong Mei. A case study of internetware development. Proceedings of the Second Asia-Pacific Symposium on Internetware, 2010.
- X Ma, M Zhou, H Mei. How developers participate in open source projects: a replicate case study on JBossAS, JOnAS and Apache Geronimo. Proceedings of the 1st International Workshop on Replication in Empirical Software Engineering Research, May, 2010
- J. Xie, M. Zhou and A. Mockus. Visualizing the evolution of software issue-tracking practices. 5th International Symposium on Empirical Software Engineering and Measurement (ESEM 2011).
- M. Zhou. 2012. Looking for micro-process in large-scale data. In Proceedings of the 2nd international workshop on Evidential assessment of software technologies (EAST '12). ACM, New York, NY, USA, 39-42.

